Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins.

نویسندگان

  • Abraham Wolcott
  • Daniele Gerion
  • Micah Visconte
  • Jia Sun
  • Adam Schwartzberg
  • Shaowei Chen
  • Jin Z Zhang
چکیده

Quantum dots (QDs) have been increasingly used in biolabeling recently as their advantages over molecular fluorophores have become clear. For bioapplications QDs must be water-soluble and buffer stable, making their synthesis challenging and time-consuming. A simple aqueous synthesis of silica-capped, highly fluorescent CdTe quantum dots has been developed. CdTe QDs are advantageous as the emission can be tuned to the near-infrared where tissue absorption is at a minimum, while the silica shell can prevent the leakage of toxic Cd(2+) and provide a surface for easy conjugation to biomolecules such as proteins. The presence of a silica shell of 2-5 nm in thickness has been confirmed by transmission electron microscopy and atomic force microscopy measurements. Photoluminescence studies show that the silica shell results in greatly increased photostability in Tris-borate-ethylenediaminetetraacetate and phosphate-buffered saline buffers. To further improve their biocompatibility, the silica-capped QDs have been functionalized with poly(ethylene glycol) and thiol-terminated biolinkers. Through the use of these linkers, antibody proteins were successfully conjugated as confirmed by agarose gel electrophoresis. Streptavidin-maleimide and biotinylated polystyrene microbeads confirmed the bioactivity and conjugation specificity of the thiolated QDs. These functionalized, silica-capped QDs are ideal labels, easily synthesized, robust, safe, and readily conjugated to biomolecules while maintaining bioactivity. They are potentially useful for a number of applications in biolabeling and imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of CdTe quantum dots coated with biocompatible materials and investigation of their identification Properties

Fingerprint identification or dactyloscopy is a method for human identification. The impressions left by a human finger on surfaces are not visible to naked eyes (latent fingerprint); therefore, they require revelation to become visible and identified. Within the last century, several fingerprint revelation techniques such as optical, physical, and chemical were studied. These traditional metho...

متن کامل

Auger recombination dynamics in hybrid silica-coated CdTe nanocrystals.

CdTe quantum dots coated with a silica layer containing CdS-like clusters exhibit intense photoluminescence and a spectral red-shift. Biexciton Auger recombination of these particles is examined by transient absorption spectroscopy. A lengthening of the Auger recombination lifetime by a factor of ∼3.5 in the presence of the CdS-like clusters is observed and may contribute to the good PL propert...

متن کامل

Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission

Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...

متن کامل

Raspberry-like PS/CdTe/Silica Microspheres for Fluorescent Superhydrophobic Materials

Superhydrophobic particulate films were fabricated via deposition of raspberry-like fluorescent PS/CdTe/silica microspheres on clean glass substrates and surface modification. Particularly, the fluorescent microspheres were prepared by a kind of modified strategy, namely introducing poly (acrylic acid)-functionalized polystyrene microspheres and thiol-stabilized CdTe quantum dots into a hydroly...

متن کامل

Electrophoretic study of peptide-mediated quantum dot-human immunoglobulin bioconjugation.

The bioconjugation of quantum dots (QDs) is a key process in their application for bioanalysis as well as imaging. The coupling of QDs with biologically active molecules such as peptides, nucleic acids, and/or antibodies enables their fluorescent labeling, and therefore, selective and sensitive tracking during the bioanalytical process, however, the efficiency of the labeling and preservation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 11  شماره 

صفحات  -

تاریخ انتشار 2006